IMMONIUM: A PARA-DIRECTING GROUP WITH A POSITIVE POLE ADJACENT TO THE RING Kevan Brown and A. R. Katritzky School of Chemical Sciences, University of East Anglia, Norwich, England. (Received 24 February 1964)

Ridd and his co-workers¹ have shown that groups NR_3^+ (R = H or Me) are not exclusively meta directing but form mixed meta and para mono-nitro derivatives including from 10% to 38% of para substitution. It seemed possible that immonium groups $-NR = CR_2^+$ might be predominantly para directing, despite the positive pole adjacent to the benzene ring, and we have

803

Immonium

now shown this is so by the reactions shown in the scheme²; I^3 (2,3,3trimethyl indolenine) and II⁴ were prepared by Fisher indolenine synthesis. We used the cyclic derivative (III bis-(1,2,3,3-tetramethyl indoleninium) sulphate) to prevent the ready hydrolysis to which acyclic imines are prone: ring opening had not occurred, for the ring-opened derivative should behave like PhNMeH⁺₂. Nitrations were carried out by adding, dropwise over a period of 30 minutes, one mole of sodium nitrate dissolved in concentrated sulphuric acid to the indolenine in concentrated sulphuric acid at 0 - 10° Stirring was continued for a further 5 minutes before the reaction was guenched.

The present results strongly support the hypothesis of Noland, Smith, and Johnson⁵ that the 5-nitration of indoles in sulphuric acid proceeds by initial protonation at the 3-position which yields an analogue of lII.

References.

¹ Dr. J. H. Ridd, Lecture reported in <u>Chem. and Eng. News</u>, <u>41</u>, 48 (1963) and <u>Chem. and Ind.</u>, 1743 (1963). J. H. Ridd and J.H.P. Utley, <u>Proc.</u> <u>Chem. Soc.</u>, 24 (1964).

² Satisfactory analyses were obtained for new compounds.

³ G. Plancher, <u>Ber.</u>, <u>31</u>, 1488 (1898).

⁴ D. S. Deorha and S. S. Joshi, <u>J. Org. Chem.</u>, <u>26</u>, 3527 (1961).

⁵ W. E. Noland, L. R. Smith and D. C. Johnson, <u>J. Org. Chem.</u>, <u>28</u>, 2262 (1963).